
Cloud-native apps 
REST API testing

Kirill Shepitko

Konstantins Tarasjuks



Who We Are & What We Do

neotech.lv www.neotech.lvneotechlv

neotechlv

http://www.neotech.lv/


How We Do It



How We Deliver It



•Relies on IaaS

• Scalable, resilient, self-healing, stateless

•Containerized

What is a 
cloud-native 

app?

«Cloud native is an approach to building and
running applications that fully exploit the
advantages of the cloud computing model.»
Source: What are Cloud-Native Applications? - Pivotal



Test pyramid

Unit tests

Integration tests

Acceptance tests

UI 
tests

5%

5%

10%

80%

• UI – 5%

• Acceptance – 5%

• Integration – 10%

• Unit – 80%



Our test pyramid

Unit tests

Integration tests

Acceptance tests

UI 
tests

0%

0%

20%

80%

• UI – 0%

• Acceptance – 0%

• Integration – 20%

• Unit – 80%



Problems we had
Contract broken

Deployment is broken



What we needed
• REST API acceptance tests

• Tests should test REST contracts

• Tests should be fast

• Should be able to mimic correspondent 
systems

• Should be able to detect the 
deployment problems

• Should be lightweight enough to run 
tests on dev machines

• Should have nice reporting



REST API 
contract 
testing



Existing 
Frameworks’ 
Issues

Great for a “Hello world” app

Lots of very similar contracts 
(maintain it!)

Tests are generated

Lot of code to write



How Spring Cloud 
Contract Works

1. Write contract

2. Verify contract from producer side 
(automated)

3. Publish service stubs to artifactory
(there’s a plugin)

4. Write a test on client side, using 
stubs



Writing 
Spring Cloud 

Contract

• Groovy

• YAML

• Pact JSON

• Spring REST docs



Spring Cloud 
Contract for 

Polyglots



The Solution
Describe 

REST endpoints

Create scenario 
(pact)

Author test 
steps

Run tests



Imagine 
a sample 

app…



How we 
test

REST API



Before Tests

Manually start 
up the app 
ecosystem

1

Pull Swagger 
specs

2

Save Swagger 
specs to tests 

Git repo

3



Test Flow

Generate REST 
clients

1

Run tests
• Launch ecosystem 

via TestContainers

• Launch mocks

• Run scenarios

2

Generate reports

3



Benefits

• Scenario is a contract

• WireMock is useful for mocks and 
trouble emulation

• Test steps and mocks can be reused

• Easy to bring up the whole app 
ecosystem

• REST client generation approach is 
polyglot

• Great reports



Lessons Learned
• QA needs a faster solution

• REST client may be stale

• Supporting different test 
profiles

• Regenerating REST clients 
on the fly



Updated Test Flow

Start up the app 
ecosystem and 

download 
Swagger JSON

1

Generate REST 
clients (Git-

ignored)

2

Run tests

• Launch 
ecosystem again

• Launch mocks
• Run scenarios

3

Generate 
reports

4



Docker-compose Is a God

Local 
development

Tests

REST client 
generation



Problems

• No clear boundary between 
contract and acceptance 
testing

• TestContainers bind the 
solution to JUnit 4

• Springfox (generates Swagger 
spec) is quite limited



Swagger



Scenario



Generated REST client in use



Service mock



Allure report: overview



Allure report: graphs



Allure report: behaviours



Demo





Real performance



Our framework is open-source
https://github.com/neotechlv

https://github.com/neotechlv




Thank you for listening!


