
Quest for an ultimate

autotest
...Coverage?

A. Pushkarev 2018

Spoiler

• I hope that nothing in this presentation is

new for the audience

• The real projected value is to put things

we already know together

Who am I?
Alex Pushkarev

• ~ 11 years in IT

• Test focused developer/Development focused

tester

• Agile fan, XP practitioner

Why do we need “ultimate" coverage recipe?

-> We don’t!

-> We just want our tests not to be

useless…

Why do we need [automated] tests?

-> We don’t!

-> We need a stability

and certainty…

Mission: gather data and information

“Best practices” will fail you

-> There’s always a context where best

practice will fit

-> And won’t fit

Figure out the context

Figure out the context

Minimizing risk
Minimizing

time-to-prod
Limited

resources

• Agile never meant we should not have a

strategy

Adequate test automation coverage

• Can be measured via lines of code (i.e.

Code coverage)

• Can be measured via feature\stories

mapping (i.e. traceability matrix,

feature coverage, etc)

Code coverage tools

• JaCoCo

• DotCover

• CodeCoverage

Feature coverage

• Traceability matrix

• ATDD

• Feature mapping

How to misuse code coverage

-> Low coverage may show there’s a

problem

http://www.exampler.com/testing-com/writings/coverage.pdf

-> High coverage does not prove there’s no

problem

http://www.exampler.com/testing-com/writings/coverage.pdf

What is adequate?

Minimizing risk Limited resources Minimizing time

• Duplication is alright

• Both code and feature

coverage are used

• It is OK to have

separate QA team as a

gatekeeper

Common sense?.. • Duplication is not

acceptable

• Separate teams are

waste

• It is ok to use only

code coverage

What is adequate?

Minimizing risk Limited resources Minimizing time

• Duplication is alright

• Both code and feature

coverage are used

• It is OK to have

separate QA team as a

gatekeeper

Common sense?.. • Duplication is not

acceptable

• Separate teams are

waste

• It is ok to use only

code coverage

Risk-driven test automation coverage

-> We don’t need coverage

-> We need a certainty…

-> That a particular bad thing does not

happen

Two different views on Test Automation

Risk-driven test automation coverage

Testing dashboard

Application Demo - Requirements

1. As a system administrator I want to be able to add new

user to a system

2. As a system administrator I want my user form to be

automatically validated

3. As a system administrator I want my user form check if

password is strong enough

Show me the application

https://github.com/senpay/

feature-test-master-class

https://github.com/senpay/feature-test-master-class

Wonna-be algorithm

• Understand the context
[and challenge context assumptions]

• Define a goal/mission/risks
[does anybody have an idea what the heck you’re doing here]

• Use an appropriate way to support your coverage
• Code coverage

• Feature coverage

• Risk coverage

Final element: the team of individuals

who care about the crafts

Individuals and interactions over processes and tools

Essential complexity and Accidental

complexity

Why software testing is hard?

• It is because software is complex.

• The more complex the thing you test - the more complex it is

to test it

• Your design (for testability) is influencing your test automation

success much higher than frameworks and tools

Should you have any questions

Alex Pushkarev

http://aqaguy.blogspot.com

https://www.linkedin.com/in/alexpushkarev/

https://twitter.com/aqaguy

http://aqaguy.blogspot.com
https://www.linkedin.com/in/alexpushkarev/
https://twitter.com/aqaguy

