
Continuous Testing at Scale

October 12th 2016, RigaTAPOST Conference

Dmitry Buzdin

dmitry@buzdin.lv

@buzdin

mailto:dmitry@buzdin.lv?subject=

Introduction to
Continuous Testing

Continuous Delivery

• Get changes to production in fast and efficient way

• Deployment happens often and can be performed
on demand

• Code is always in a deployable state

https://continuousdelivery.com

https://continuousdelivery.com

Why CD?

• Frequent release cycle

• Decreased time to market

• Decreased delivery risks

• Commercial product development

Cost of Defect Fixing

This chart is slightly different in CD
Testing is performed as frequently as possible

Continuous Delivery Pipeline

• Every code change needs to be verified

• Pipeline breaks the delivery process into stages

• Pipeline stages are not standardised

Pipeline Example

Code Review

Build &
Unit Test

Deploy to
Test

Run Tests

Deploy to
Stage

Deploy to
Prod

Commit

Change

Confidence

What is in “Test” Phase?

• Simplest scenario - Write tests in your favoured test
framework and execute!

Agile Testing Strategy

“Developers write some integration tests
and execute them in the pipeline”

Have Devs Considered?…
environment live checks

smoke testing

functional testing

security testing

performance testing

fault-tolerance testing

browser compatibility testing

mobile testing

test environment preparation

test planning

test scheduling

test reporting

testing process traceability

Tests Pyramid

http://martinfowler.com/bliki/TestPyramid.html

Another Pyramid

https://testing.googleblog.com/2015/04/just-say-no-to-more-
end-to-end-tests.html

Is it build right?

Is the right thing built?

What tend to happen is

“Development focused CD”

Development focused CD
sprint 1 sprint 2 sprint 3

Version 1 Version 2

testing 1

testing 2
Manual Testing

Testers are lagging
behind a

continuous delivery
development train

“Continuous Testing is the process of executing
automated tests as part of the software delivery
pipeline to obtain immediate feedback on the
business risks associated with a software release
candidate.”

Shippable feature
DEV

OPS

TEST

https://en.wikipedia.org/wiki/Continuous_testing

https://en.wikipedia.org/wiki/Continuous_testing

Testers

Test management
Test plans

Manual testing
Non-functional testing
Structured approach

Standards compliancy

Developers

Apply TDD
No bureaucracy

All automated tests
Ad-hoc decisions

Feature-level testing

How do you
align?

Is Continuous Testing easy?
Not at all!

Some advices to follow…

Story Begins

Setting the Context

• Telecom company had a network
management system developed for the
last 20 years

• Time to do a complete rewrite for 4G/5G

• Continuous Delivery model selected

100+
Scrum teams

1000+
Components

2000+
Git Repositories

10000+
Functional Tests

Everything
Automated

200+
Test Environments

Expectations
• Fast feedback cycle

• System quality statement few times a day

• Testing compliant to quality standards

• Traceability throughout the process

• Agile development model

Traceability is the ability to verify the history, location, or
application of an item by means of documented recorded

identification.

Boring bureaucratic stuff
for non-agile

environments only, right?

Artefact

Test Code

Requirement

Change

Relates
to Covers

Build

Executes

ProducesJIRA ID

BUILD ID

ARTIFACT ID

SHA ID ???

Test
Describes

TEST ID

Test ID in Code
Every test should have a

unique test id

Test case related
meta-data

Test Case Management
Relates to a test

description in TMS

Test ID: TMS-2
Title: Test login
Requirements: JIRA-678
Priority: CRITICAL
Components: Authorisation
Tags: Regression, UI
Description: ...

Test ID: TMS-1
Title: Test database connection
Requirements: JIRA-124, JIRA-234
Priority: CRITICAL
Components: DB
Tags: Regression, DB
Description: ...

Allure Framework

https://github.com/allure-framework/

Test Cases

Test Results
(XML Documents)

Aggregation

Interactive
Report

All popular test
frameworks supported

Run

https://github.com/allure-framework/

Feature coverage
by tests

Drill-down to test
step level

https://wiki.jenkins-ci.org/display/JENKINS/Allure+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Allure+Plugin

Test Run Summary

Achievements

• Achieved a fully automated traceability in a single
test run

• Possibility to extract and store test statistics

• Traceability is simple given right tools

CD Meets Microservices

Build Test Deploy

Build Test Deploy

Build Test Deploy

Service A

Service B

Service C

x 100 Teams

Service A

Service B

Service C

1.0 1.1 1.2 1.3

2.1 2.2 2.3 2.4

1.12 1.13 1.14 1.15 1.16

System Version

System Level Testing

Build Test Deploy

End 2 End Tests

New package releases
trigger E2E tests

Team
Testware
Package

Produces Contains

Test
Suites

Test
Cases

Teams are producing
testware packages

Testware 1

Testware 2

Testware 3

Test Schedule

Test Executor

Team A

Team B

Team C

Testware packages
are combined with

help of test
schedules

Test Schedule
Team A

Testware

Team B
Testware

Team C
Testware

Consistency
Check

Smoke
Testing

Environment
Cleanup

Schedule items are coming
from different teams

Environment
Preparation

https://wiki.jenkins-ci.org/display/JENKINS/Build+Flow+Plugin

parallel ({
 guard {
 build(“run-tests”, “testware1”)
 build(“run-tests”, “testware2”)
 } rescue {
 build(“run-tests”, “cleanup”)
 }
})

Tests schedule
produces build flow
definition, which is

given to Jenkins build
farm

Visualisation

https://wiki.jenkins-ci.org/display/JENKINS/Build+Flow+Plugin

Aggregation

Full Execution
ReportNetwork Drive

Test ware Level
Reports

Tests

Achievements

• Tests from multiple teams are combined to a single
test run

• Aggregated reports for all test cases are available

How to run tests as quickly as
possible to minimise the

feedback loop?

Tests Quality Police
• Ensuring tests are

• efficient (API vs UI, no waits)

• can run in parallel

• data-driven

• reusing other teams test API

Distributed Test Executor

• Cloud based

• Scale-up/scale-down

• Health checks

• Parallelisation

MASTER

SLAVE

MASTER

WORKER

Test Lab

SLAVE SLAVE

WORKER

MASTER

WORKER WORKER

MASTER

WORKER WORKER

Testing Flow

Smoke
Tests

Quick
Regression

Long
Regression

Full
Regression

 Component
Tests Isolated runs

Environment up and running

Core use-cases

Important use-cases

All use-cases

 Component
Tests Component

Tests

Decision is taken if to
continue pipeline
after every step

Achievements

• Tests quality is measured and improved

• Tests execution time is minimised

Failed test !=

Sometimes

Interpreting Results
• 100% green tests pipeline all the time - not realistic

at this scale

• what is failed test priority?

• is it a new test?

• is it a flaky test?

• was it rerun several times?

Test Result Analytics

Need something like this, but with more information

Internal Test
Reporting Solution

Achievements

• Identifying good enough builds

• Ignoring random faults

• Historical test results for analysis

The Outcome

• Full testing traceability

• E2E pipeline automation

• Continuous testing

Lessons Learned

There are not too many tools
out there to support large
scale continuous testing

Instead of using monolithic tools - aim for
extensible independent services and

interoperability standards

CD Standards
• Some well-known standards and platforms:

• Jenkins - Pipelenes

• Docker Containers

• JUnit 5 - Test Runner

• WebDriver - Selenium HTTP API

• Allure Reporting - Common for all test tools

Next 5 years are going to
be about CD and Testing

tools interoperability

This slide was intentionally left blank

Copyright: nisanga / 123RF Stock Photo

martinm303 / 123RF Stock Photo
dundanim / 123RF Stock Photo

enjoyphoto / 123RF Stock Photo

pedrosala / 123RF Stock Photo

saranya2908 / 123RF Stock Photo

kzwwsko / 123RF Stock Photo

