Testing of the data access layer
and the database itself

Vineta Arnicane and Guntis Arnicans

University of Latvia

TAPOST 2015, 08.10.2015

Prolog

Vineta Arnicane, Guntis Arnicans, Girts Karnitis
DigiBrowser as a tool for testers

is replaced by

Vineta Arnicane and Guntis Arnicans

Testing of the data access layer and the
database itself

Database application testing

* «A database application is a computer
program whose primary purpose is entering
and retrieving information from a
computerized database» (Wikipedia)

* Tons of applications are developed

— How do developers perform testing?

— Is adequate attention granted to testing of
database itself and interactions with it?

Typical testing approach

e Approach:
— take an application as a black box software

— design test cases according to formal or informal
specification

— [prepare database initial state]
— run test cases
— verify results (software behavior)

* Itis a black box testing!

— sometimes testers have no access to source code

— sometimes testers have no programming skills or they
are not IT specialists at all

Database testing in Wikipedia

Term «database testing» is not too popular (e
Wikipedia article is created 5 December 2011)

There are many interpretations what this term means
(Wikipedia does not provide a clear definition at all)

«It is important to test in order to obtain a database
system which satisfies the ACID properties (Atomicity,
Consistency, Isolation, and Durability) of a database
management system»

«Database testing usually consists of a layered process,
including the user interface (Ul) layer, the business layer,
the data access layer and the database itself»

What is database testing? |

Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-fag.html

e Database testing involves some in depth
knowledge of the given application and requires
more defined plan of approach to test the data

* Key issues include:
1) Data integrity
2) Data validity

3) Data manipulation and updates

* Tester must be aware of the database design
concepts and implementation rules

What is database testing? Il

Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-fag.html

 Database testing is all about testing:
joins,

VIeWS,

imports and exports,

testing the procedures,

checking locks,

indexing,

etc.

* |t’s not about testing the data in the database (!)
e Usually database testing is performed by DBA (!)

AN NI NN Y RN

What is database testing? Il

Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-fag.html

Database testing basically includes the following:
1) Data validity testing

2) Data integrity testing

3) Performance related to data base

4) Testing of procedure, triggers and functions

For doing data validity testing you should be good in SQL
queries

For data integrity testing you should know about
referential integrity and different constraints

For performance related things you should have idea about
the table structure and design

For testing procedures, triggers and functions you should
be able to understand the same

Using of SQL statements in database testing

Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-fag.html

The most important statement for database testing is
the SELECT statement, which returns data rows from
one or multiple tables that satisfy a given set of criteria

You may need to use other DML (Data Manipulation
Language) statements like INSERT, UPDATE and DELETE
to manage your test data

You may also need to use DDL (Data Definition
Language) statements like CREATE TABLE, ALTER TABLE,
and DROP TABLE to manage your test tables

You may also need to some other commands to view
table structures, column definitions, indexes,
constraints and stored procedures

Types of database testing

e Structural testing * Functional database testing

— Schema — Checking data integrity and

consistenc
— Database elements - tables, columns y

— Login and user securit
— Default values for a column & y

: : : — Incoming data values
— Data invariants for a single column

— Outgoing data values (from

— Data invariants involving several columns queries, stored functions, views ...)

— Referential integrity rules
— Stored procedures/functions

— Triggers * Non-functional testing
— Views testing — Load testing
— Constraints — Stress testing

— Database server validations
— Existing data quality

Database functional testing tasks

* Database initialization - put database into a
known state before running tests to make sure
that the tests will be executed correctly

* Functional testing - check that the application
operates with the database correctly

e Data verification - check the structure and the
actual content of a database

Necessity for white box testing

* Black box testing cannot reveal all defects in
software

* White box testing allows to find specific
problems and to evaluate a testing quality by
exploiting various testing coverage metrics

* But it requires good IT skills and
understanding what we can do and what we
cannot, and how many resources it takes

Software testing coverage (ISTQB)

statement coverage
branch coverage

condition coverage
— decision condition coverage
— multiple condition coverage

decision coverage

— modified condition /
condition coverage (MC/DC)

LCSAJ coverage

path coverage

N-swich coverage
boundary value coverage

equivalence partition
coverage

data flow coverage

Condition Coverage — Achieved

1 FUNCTION DocumentRequired;

2 BEGIN; 2,34

3 VAR CeilingValue INTEGER;

4 VAR BusinessType, Commercial, DocumentRequired TEXT;

5 READ CeilingValue, BusinessType, Commercial; (5

6 IF (CeilingValue >= 650000 AND BusinessType = ‘F" AND Commercial = ‘N’)

7 DocumentRequired = *Y";

8 ELSE

9 DocumentRequired = ‘N°;

10 RETURN DocumentRequired; -\'_

11

6
~—
T
END; \
\
. F

Test Case 1: Test Case 2:
CeilingValue = 650000 CeilingValue = 3000

- e
Conditions Covered: Conditions Covered: ? &
5, 6(T), 6'(T), 6"(T), 7, 10 5, 6(F), 9, 10

Test Case 3: Test Case 4:
CeilingValue = 650000 CeilingValue = 650000
BusinessType = ‘NP’ BusinessType = F*
Commercial = "N’ Commercial = '¥"
Conditions Covered: Conditions Covered:

5, 6IT), &'(F), 9, 10 5, 6(T), 6'(T), 6“(F), 9, 10

Source: http://www.seguetech.com/blog/2014/06/13/how-
much-test-coverage-enough-testing-strategy

I "
b4 \F \
BusinessType = 'F BusinessType = 'F* A
Commercial = 'N' Commercial = ‘N’ /.\\ A \'_
T F \\\\3

SQL statement itself is like a program

select e.company, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities c
where e.city id =c.id and e.age > 30 and e.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

SQL statement itself is like a program

select e.company, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities c
where e.city id =c.id and e.age > 30 and e.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

* Isit enough to «cover» this statement only with one test case?
* No, of course!

 Wait! What is a test case?
* This statement maybe depend on input data or maybe do not.
It also depends on a database state while its executing

SQL statement itself is like a program

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and
e.age > 30 and m.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

* Mistakes using table identifiers (letters):
v’ It is easy use wrong letter (cities ¢, companies m)

v wrong table for record counting (c.id or m.id instead of e.id
in count(e.id))

SQL statement itself is like a program

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and
e.age > 30 and m.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

* Wrong conditions:
v’ e.age >= 30, e.age < 30, e.age > 20, e.age > 40, e.age > 60
v wrong operator and, or, not (e.g. not like)
v' subcondition is not included into parenthesis
v Upper/lower letters (Microsoft, Microsoft)
v' Whole word (Microsoftware, SuperMicrosoft)

SQL statement itself is like a program

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and
e.age > 30 and m.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

* Additional conditions (having):
v’ avg_salary <2000
v’ avg_salary <=2000
v’ avg_salary >2000
v’ avg_salary <3000

SQL statement itself is like a program

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and
e.age > 30 and m.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

e Aggregation functions:
v’ |s it possible that count(e.id) returns 0?

v' Maybe e.salary has different currencies in different
records?

SQL statement itself is like a program

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and
e.age > 30 and m.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

* Join problems in where clause:
v" NULL values in fields (e.city_id, e.company _id)
v" inner, left or right join

v missed records (database integrity is broken)
v’ excessive records (duplicates) cause wrong result

SQL statement itself is like a program

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and
e.age > 30 and m.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

e SQL SELECT statement has many commands/functions/options
* Different DBMS use different SQL standards with «specific features»
* For adequate SQL statement testing we need:
v’ various database states (deciding what data we need; generating
needed records, initializing database for each «test case»)
v’ oracle for evaluating execution result

Coverage criteria for testing SQL queries

Good criteria helps to create needed database

states and optim

ize number of states

Only a few groups of researchers worked on this

issue
Criteria are deve
Most of testers C

oped for the most popular cases
o not know about criteria

There are no we
industry

I-described cases of usage in

Automation or tool support is weak

Principles of criteria (JOIN)

from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id

 We need database states for «e.city_id = c.id» where

no records in both tables

no records in one table

city_id has NULL and not NULL values

exactly one matching

many matchings (usual number, large number)

no matchings

combinations of previous requirements

* Condition coverage for e.city id = c.id and e.company_id = m.id
FF, FT, TF, TT

 Combinations of both mentioned groups

NI NI NI NI NN

Principles of criteria (condition)

e.age > 30 and m.company like «%Microsoft%»

* We need database states for «e.age > 30» where
v" no matchings
v' exactly one matching
v" many matchings (usual number, large number)
v’ combinations of previous requirements
* Condition coverage for e.age > 30 and m.company like «%Microsoft%»
FF, FT, TF, TT
 Combinations of both mentioned groups

Principles of criteria (other)

group by company, city
order by avg_salary desc
having avg salary < 2000

* For each clause we can define similar coverage requirements

Dynamically created SQL statement

«select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and

e.age > » + ageVar + « and m.company like ‘%» + companyVar + «%’
group by company, city
order by avg salary desc
having avg_salary < » + salaryVar

* Symbolic execution can help us to obtain all or significant part
of all possible SQL SELECT statements

e Ifinput values goes from database or user, then number of
variants can be infinite

Mutation testing

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary
from employees e, cities ¢, companies m
where e.city_id = c.id and e.company_id = m.id and
e.age > 30 and m.company like «%Microsoft%»
group by company, city
order by avg salary desc
having avg_salary < 2000

 Make a mutation of the original statement, e.g. e.age >= 30

* Execute all test cases

* If all results are the same as for the original statement, then
test suite is not adequate

* Do these steps for all possible mutations

Other SQL statements

Insert
Delete
Update
Etc.

SELECT is read only operation

Most of other statements change database
schema or data

We need to verify changes in the database!

28

Conclusions

Database testing problem is hard and huge
resource consuming

Nor researchers, nor practitioners have solutions
for adequate database testing

A lot of theoretical results are unknown for
practitioners

There are not many tools supporting at least part

of database testing activities

— Most of tools are developed in universities and are
not maintained

Epilogue

* DigiBrowser is[/was] a tool that can help
relational database exploring un data
inspecting more easily then other data
browsers

* DigiBrowser does not require writing SQL
queries and can by used by non-IT specialists

Thanks!

