
Testing of the data access layer 
and the database itself 

Vineta Arnicane and Guntis Arnicans 
 

University of Latvia 
 

TAPOST 2015, 08.10.2015 

1 



Prolog 

Vineta Arnicane, Guntis Arnicans, Girts Karnitis 

DigiBrowser as a tool for testers 

 

is replaced by 

 

Vineta Arnicane and Guntis Arnicans 

Testing of the data access layer and the 
database itself 

2 



Database application testing 

• «A database application is a computer 
program whose primary purpose is entering 
and retrieving information from a 
computerized database» (Wikipedia) 

• Tons of applications are developed 

– How do developers perform testing? 

– Is  adequate attention granted to testing of 
database itself and interactions with it? 

3 



Typical testing approach 

• Approach: 
– take an application as a black box software  
– design test cases according to formal or informal 

specification  
– [prepare database initial state]  
– run test cases 
– verify results (software behavior) 

• It is a black box testing! 
– sometimes testers have no access to source code 
– sometimes testers have no programming skills or they 

are not IT specialists at all 

4 



Database testing in Wikipedia 

• Term «database testing» is not too popular (the 

Wikipedia article is created 5 December 2011) 

• There are many interpretations what this term means 
(Wikipedia does not provide a clear definition at all) 

• «It is important to test in order to obtain a database 
system which satisfies the ACID properties (Atomicity, 
Consistency, Isolation, and Durability) of a database 
management system» 

• «Database testing usually consists of a layered process, 
including the user interface (UI) layer, the business layer, 
the data access layer and the database itself» 

5 



What is database testing? I 
Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-faq.html 

• Database testing involves some in depth 
knowledge of the given application and requires 
more defined plan of approach to test the data  

• Key issues include: 

1) Data integrity 

2) Data validity 

3) Data manipulation and updates 

• Tester must be aware of the database design 
concepts and implementation rules 

6 



What is database testing? II 
Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-faq.html 

• Database testing is all about testing:  
  joins,  
  views,  
  imports and exports,  
  testing the procedures,  
  checking locks,  
  indexing,  
  etc.  

• It’s not about testing the data in the database (!) 
• Usually database testing is performed by DBA (!) 

7 



What is database testing? III 
Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-faq.html 

• Database testing basically includes the following: 
1) Data validity testing 
2) Data integrity testing 
3) Performance related to data base 
4) Testing of procedure, triggers and functions 

• For doing data validity testing you should be good in SQL 
queries 

• For data integrity testing you should know about 
referential integrity and different constraints 

• For performance related things you should have idea about 
the table structure and design 

• For testing procedures, triggers and functions you should 
be able to understand the same 

8 



Using of SQL statements in database testing 
Source: http://testsoftwarefaq.blogspot.com/2014/02/database-testing-faq.html 

• The most important statement for database testing is 
the SELECT statement, which returns data rows from 
one or multiple tables that satisfy a given set of criteria  

• You may need to use other DML (Data Manipulation 
Language) statements like INSERT, UPDATE and DELETE 
to manage your test data  

• You may also need to use DDL (Data Definition 
Language) statements like CREATE TABLE, ALTER TABLE, 
and DROP TABLE to manage your test tables  

• You may also need to some other commands to view 
table structures, column definitions, indexes, 
constraints and stored procedures 

9 



Types of database testing 

• Structural testing 

– Schema  

– Database elements - tables, columns 

– Default values for a column 

– Data invariants for a single column 

– Data invariants involving several columns 

– Referential integrity rules 

– Stored procedures/functions 

– Triggers 

– Views testing 

– Constraints 

– Database server validations 

– Existing data quality 

 

 

• Functional database testing 

– Checking data integrity and 
consistency 

– Login and user security 

– Incoming data values 

– Outgoing data values (from 
queries, stored functions, views ...) 

 

 

• Non-functional testing 

– Load testing 

– Stress testing 

 

10 



Database functional testing tasks 

• Database initialization - put database into a 
known state before running tests to make sure 
that the tests will be executed correctly 

• Functional testing - check that the application 
operates with the database correctly 

• Data verification - check the structure and the 
actual content of a database 

 

11 



Necessity for white box testing 

• Black box testing cannot reveal all defects in 
software 

• White box testing allows to find specific 
problems and to evaluate a testing quality by 
exploiting various testing coverage metrics 

• But it requires good IT skills and 
understanding what we can do and what we 
cannot, and how many resources it takes 

12 



Software testing coverage (ISTQB) 

• statement coverage 
• branch coverage 
• condition coverage 

– decision condition coverage 
– multiple condition coverage 

• decision coverage 
– modified condition / 

condition coverage (MC/DC) 

• LCSAJ coverage 
• path coverage 
• N-swich coverage 
• boundary value coverage 
• equivalence partition 

coverage 
• data flow coverage 

 
 
 
 

Source: http://www.seguetech.com/blog/2014/06/13/how-
much-test-coverage-enough-testing-strategy 

13 



SQL statement itself is like a program 

select e.company, c.city,  sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c 

 where e.city_id = c.id and e.age > 30 and  e.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

14 



SQL statement itself is like a program 

select e.company, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c 

 where e.city_id = c.id and e.age > 30 and  e.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• Is it enough to «cover» this statement only with one test case? 
• No, of course! 
 
• Wait! What is a test case?  
• This statement maybe depend on input data or maybe do not. 

It also depends on a database state while its executing 
15 



SQL statement itself is like a program 

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > 30 and  m.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• Mistakes using table identifiers (letters): 
 It is easy use wrong letter (cities c, companies m) 
 wrong table for record counting (c.id or m.id instead of e.id 

in count(e.id)) 
 
 

16 



SQL statement itself is like a program 

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > 30 and  m.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• Wrong conditions: 
 e.age >= 30, e.age < 30, e.age > 20, e.age > 40, e.age > 60 
 wrong operator and, or, not (e.g. not like) 
 subcondition is not included into parenthesis 
 Upper/lower letters (Microsoft, Microsoft) 
 Whole word (Microsoftware, SuperMicrosoft) 

17 



SQL statement itself is like a program 

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > 30 and  m.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• Additional conditions (having): 
 avg_salary <2000  
 avg_salary <=2000 
 avg_salary >2000 
 avg_salary <3000 

 
18 



SQL statement itself is like a program 

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > 30 and  m.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• Aggregation functions: 
 Is it possible that count(e.id) returns 0? 
 Maybe e.salary has different currencies in different 

records? 
 
 

19 



SQL statement itself is like a program 

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > 30 and  m.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• Join problems in where clause: 
 NULL values in fields (e.city_id, e.company_id) 
 inner, left or right join  

 
 missed records (database integrity is broken) 
 excessive records (duplicates) cause wrong result 

20 



SQL statement itself is like a program 

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > 30 and  m.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• SQL SELECT statement has many commands/functions/options 
• Different DBMS use different SQL standards with «specific features» 
• For adequate SQL statement testing we need: 

 various database states (deciding what data we need; generating 
needed records, initializing database for each «test case») 

 oracle for evaluating execution result 

21 



Coverage criteria for testing SQL queries 

• Good criteria helps to create needed database 
states and optimize number of states 

• Only a few groups of researchers worked on this 
issue 

• Criteria are developed for the most popular cases 

• Most of testers do not know about criteria 

• There are no well-described cases of usage in 
industry 

• Automation or tool support is weak 

22 



Principles of criteria (JOIN) 

from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id  

• We need database states for «e.city_id = c.id» where 
  no records in both tables 
  no records in one table 
  city_id has NULL and not NULL values 
  exactly one matching 
  many matchings (usual number, large number) 
  no matchings 
  combinations of previous requirements 

• Condition coverage for e.city_id = c.id and e.company_id = m.id  
 FF, FT, TF, TT 
• Combinations of both mentioned groups 

23 



Principles of criteria (condition) 

e.age > 30 and  m.company like «%Microsoft%» 

• We need database states for «e.age > 30» where 
  no matchings 
  exactly one matching 
  many matchings (usual number, large number) 
  combinations of previous requirements 

• Condition coverage for e.age > 30 and  m.company like «%Microsoft%»  
 FF, FT, TF, TT 
• Combinations of both mentioned groups 

24 



Principles of criteria (other) 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• For each clause we can define similar coverage requirements 

25 



Dynamically created SQL statement 

«select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > » + ageVar + « and  m.company like ‘%» + companyVar + «%’ 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < » + salaryVar 

 

 • Symbolic execution can help us to obtain all or significant part 
of all possible SQL SELECT statements 

• If input values goes from database or user, then number of 
variants can be infinite 

26 



Mutation testing 

select m.company, c.id, c.city, sum(e.salary)/count(e.id) as avg_salary 

 from employees e, cities c, companies m 

 where e.city_id = c.id and e.company_id = m.id and 

  e.age > 30 and  m.company like «%Microsoft%» 

 group by company, city 

 order by avg_salary desc 

 having avg_salary < 2000 

• Make a mutation of the original statement, e.g. e.age >= 30 
• Execute all test cases 
• If all results are the same as for the original statement, then 

test suite is not adequate 
 

• Do these steps for all possible mutations 
27 



Other SQL statements 

• Insert 

• Delete 

• Update 

• Etc. 

 

• SELECT is read only operation 

• Most of other statements change database 
schema or data 

• We need to verify changes in the database! 

 
28 



Conclusions 

• Database testing problem is hard and huge 
resource consuming 

• Nor researchers, nor practitioners have solutions 
for adequate database testing 

• A lot of theoretical results are unknown for 
practitioners  

• There are not many tools supporting at least part 
of database testing activities 
– Most of tools are developed in universities and are 

not maintained 

29 



Epilogue 

• DigiBrowser is[/was] a tool that can help 
relational database exploring un data 
inspecting more easily then other data 
browsers 

• DigiBrowser does not require writing SQL 
queries and can by used by non-IT specialists 

 

Thanks! 
30 


