
- accessibility-developer-tools (ADT)

- Selenium

- Scala

- Cucumber & Gherkin

- Web accessibility means that people with
disabilities can use the Web.

to w3.org for full description

http://www.w3.org/WAI/intro/accessibility.php#i-what

- The Web is an increasingly important
resource in many aspects of life;

- An accessible Web can help people with
disabilities more actively participate in
society.

to w3.org for full description

http://www.w3.org/WAI/intro/accessibility.php#important

- Many accessibility features are easily
implemented if they are planned from the
beginning of Web site development or
redesign;

- Fixing inaccessible Web sites can require
significant effort.

to w3.org for full description

http://www.w3.org/WAI/intro/accessibility.php#specific

- There are evaluation tools that help with
evaluation (one of which is ADT);

- However, no tool alone can determine if a
site meets accessibility guidelines;

- Knowledgeable human evaluation is required
to determine if a site is accessible.

to w3.org for full description

http://www.w3.org/WAI/ER/existingtools.html
http://www.w3.org/WAI/intro/accessibility.php#evaluate

- ADT (to GitHub);

- Selenium (to seleniumhq.org);

- Scala (to scala-lang.org);

- Cucumber (to cucumber.io).

https://github.com/GoogleChrome/accessibility-developer-tools
http://www.seleniumhq.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
https://cucumber.io/

As written in the readme, ADT is: “…a library
of accessibility-related testing and utility
code.”

The library and utility code from the project is
compiled into a single executable JavaScript
file:

axs_testing.js

(to axs_testing.js raw content)

https://raw.githubusercontent.com/GoogleChrome/accessibility-developer-tools/master/dist/js/axs_testing.js

We use a library of audit rules compiled into a
single JavaScript. From Selenium we need a
mechanism for executing JavaScript.

Therefore we can use:

JavascriptExecutor Interface

(to selenium.googlecode.com)

http://selenium.googlecode.com/git/docs/api/java/org/openqa/selenium/JavascriptExecutor.html

To use Selenium we must use a programming
language that is supported by Selenium;

Scala is not listed, but Scala is compatible with
Java. Scala classes are Java classes, and vice
versa (to more information).

http://www.seleniumhq.org/about/platforms.jsp#programming-languages
http://www.seleniumhq.org/about/platforms.jsp#programming-languages
http://www.seleniumhq.org/about/platforms.jsp#programming-languages
http://www.scala-lang.org/old/node/263.html

It is optional to use Cucumber as you can
achieve similar results by writing Scala code
for Selenium;

Cucumber is used in this example to organise
the test suite and make the user journey
readable by a larger audience.

- User journey

- Code for journey

- Code for test execution

- Code for logs

A user journey/story/feature would look like:

@suite

Feature: Accessible user journey

 As a tester

 I want to test a web page for accessibility

 So that I can be sure that it does not contain critical
accessibility issues

 Scenario: Test accessibility for Google.com

 Given user navigates to 'http://google.com' web page

 Then accessibility test is executed on the open page

Our journey consists of a step that
opens the given URL in a browser:

Given("""^user navigates to '(.*)' web page$""") {

 (userUrl: String) =>

 withCurrentDriver { implicit webDriver =>

 webDriver.get(userUrl)

 }

 }

Tests are executed with the help of JavascriptExecutor:

Then("""^accessibility test is executed on the open page$""") {
 () => withCurrentDriver { implicit webDriver =>
 val cache = collection.mutable.Map[String, String]()

 val jse = webDriver.asInstanceOf[JavascriptExecutor]
 def getUrlSource(arg: String): String = cache get arg match {
 case Some(result) => result
 case None =>
 val result: String = scala.io.Source.fromURL(arg).mkString
 cache(arg) = result
 result
 }

 jse.executeScript(getUrlSource("https://raw.githubusercontent.com/GoogleChrome/" +
 "accessibility-developer-tools/stable/dist/js/axs_testing.js"))
 val report = jse.executeScript("var results = axs.Audit.run();return axs.Audit.createReport(results);")
 println(report)
 }
 }

The report is generated with the help of a
JavaScript code which is held within
axs_testing.js (snippet visible in the previous
slide as well):

val report = jse.executeScript("var results = axs.Audit.run();return
axs.Audit.createReport(results);")

 println(report)

Demo

Extra bits:

Accessibility-driver repo on GitHub
(driver that piggybacks on existing journeys)

Accessibility-developer-tools wiki on GitHub

(detailed info about each error type from logs)

Presenter: Kristaps Melderis

https://github.com/hmrc/accessibility-driver
https://github.com/hmrc/accessibility-driver
https://github.com/hmrc/accessibility-driver
https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules
https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules
https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules
https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules
https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules

